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Abstract

Background: Reactivation of the telomerase reverse transcriptase gene TERT is a central feature for unlimited
proliferation of the majority of cancers. However, the underlying regulatory processes are only partly understood.

Results: We assembled regulator binding information from serveral sources to construct a generic human and
mouse gene regulatory network. Advancing our “Mixed Integer linear Programming based Regulatory Interaction
Predictor” (MIPRIP) approach, we identified the most common and cancer-type specific regulators of TERT across 19
different human cancers. The results were validated by using the well-known TERT regulation by the ETS1
transcription factor in a subset of melanomas with mutations in the TERT promoter.
Our improved MIPRIP2 R-package and the associated generic regulatory networks are freely available at https://
github.com/KoenigLabNM/MIPRIP.

Conclusion: MIPRIP 2.0 identified common as well as tumor type specific regulators of TERT. The software can be
easily applied to transcriptome datasets to predict gene regulation for any gene and disease/condition under
investigation.

Keywords: Mixed integer linear programming, Gene regulatory networks, Transcriptional regulation, Telomere
maintenance, Telomerase, Cancer

Background
Telomere repeats are lost at the 3′-end erosion during
replication of linear chromosomes. If the telomeres be-
come critically short, senescence or apoptosis is induced.
This process can thus act as a barrier towards unlimited
proliferation and tumorigenesis [1]. Cancer cells circum-
vent this by acquiring a telomere maintenance mechan-
ism (TMM) [2]. Usually, they reactivate the reverse
transcriptase telomerase extending the telomere repeats
[3, 4]. Human telomerase consists of the catalytic sub-
unit TERT and the template RNA TERC (or hTR) [5].
TERC is constitutively expressed while the TERT gene is
silenced in adult somatic cells [6, 7]. Germ and stem
cells [7] as well as most tumor cells [2] express TERT so

that telomerase is assembled. The mechanism of TERT
activation in cancer cells appears to be highly variable
between different cancer entities and numerous tran-
scription factors (TFs) have been reported to be involved
in this process [8–10]. The core region of the human
TERT promoter is located between 330 bp upstream and
228 bp downstream of the transcription start site. This
region comprises several TF binding sites, including
binding sites with GC and E-box motifs [9]. Previous
studies showed that TERT promoter mutations can in-
duce its expression in cancer cells. TERT promoter mu-
tations occur most frequently in bladder cancer (59%),
cancers of the central nervous system (43%), melanoma
skin cancer (29%) and follicular cell-derived thyroid can-
cer (10%) [11].
Here, we performed an in silico pan-cancer analysis of

TERT regulation by using an evolved version of the “Mixed
Integer linear Programming based Regulatory Interaction
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Predictor” (MIPRIP, version 2.0) to predict TFs regulating
the gene expression of TERT. The new version bases on
MIPRIP (https://github.com/KoenigLabNM/MIPRIP) which
was previously developed to identify regulatory interactions
that best explain the discrepancy of telomerase transcript
levels in Saccharomyces cerevisiae between yeast deletion
strains with shorter telomeres and strains with wild-type
telomere length. In S. cerevisiae we uncovered novel regula-
tors of telomerase expression, several of which affect histone
levels or modifications [12]. A variety of other approaches
have been developed which integrate regulatory information
into a unified model of a gene regulatory network (GRN).
Some of these approaches infer TF acitvity by linear regres-
sion employing gene expression profiles, a pre-defined net-
work of TFs and their target genes [13–15], probabilistic
models [16] or a reverse engineering approach that identifies
regulator to target gene interactions from pairwise mutual
information of their gene expression pofiles [17].
The activity of TFs frequently depends only partially

on the gene expression of the TF itself but is rather
modulated by post-translational modifications and pro-
tein stability. Hence, we and others inferred the activity
of a TF from the expression of its potential target genes
[13, 18, 19]. In the present study, we have optimized our
MIPRIP software and applied it to gene expression pro-
files of 19 different cancer types from The Cancer Gen-
ome Atlas (TCGA) to identify TFs regulating the TERT
gene.

Results
Transcription factor binding information and network
construction
We constructed a generic human regulatory network
based on seven different repositories, mainly contain-
ing experimental validated binding information from
chromatin immunoprecipitation (ChIP) based assays.
In total, the generic network comprises 618,537 inter-
actions of 1160 regulators and 31,915 target genes.
For TERT, we identified 75 putative regulators (Add-
itional file 1: Table S1) that originated mainly from
the manually curated database MetaCore™ (60 out of
75). Our list of TERT regulators compares well to the
TERT regulators described in the review by Ramlee
et al. [9]. Thirty from our assembly of 75 regulators
were also described by Ramlee et al. (P = 6.01E-23,
Fisher’s Exact Test) and except of CTCF (Encode) all
were listed in MetaCore™. Additionally, we assembled
a generic gene regulatory network for mouse contain-
ing 93,140 interactions of 976 TFs and 15,728 target
genes from three different databases. To focus on
more reliable potential interactions, entries were se-
lected based on the presumed database reliability and
co-occurrences.

Three different modes of a MIPRIP 2.0 analysis
MIPRIP 2.0 can be used to (i) predict the most import-
ant regulators of one group of samples (single-mode),
(ii) identify significant regulators being different between
two groups of samples (e.g. disease vs. control) (dual-
mode) and (iii) can be applied to more than two groups
(multi-mode). The newly developed multi-mode imple-
mentation is embedded in a statistical analysis pipeline
and can be applied to more than two datasets or condi-
tions to identify common but also condition-specific reg-
ulators (Fig. 1). Here, we applied the multi-mode
MIPRIP 2.0 version to study the regulation of TERT
across 19 different cancer types (described in the next
section) and employed the dual-mode to compare the
regulation of melanoma samples with and without TERT
promoter mutation.

Applying MIPRIP 2.0 to identify regulators of TERT across
different cancers
We selected 19 different cancer types from TCGA
(Additional file 1: Table S2) for which more than 100
primary tumor samples were available. For each can-
cer type, we set up a regulatory model for TERT by
using a 10-times three-fold cross-validation. We cal-
culated different models by restricting the numbers of
maximal regulators from 1 up to 10 resulting in 300
models per cancer type. The performance of the
models was estimated by the correlation between the
predicted and the measured gene expression value (of
TERT in the expression data). For most of the cancer
types, the correlation was r = 0.4 or better (Fig. 2a).
For cervical (CESC), ovary (OV) and melanoma skin
(SKCM) cancer the performance was distinctively
lower. The highest correlation was found for testicu-
lar germ cell cancer (TGCT) (r = 0.75) and thymoma
(THYM) (r = 0.7), which also showed the highest
TERT expression over all cancer types (Fig. 2b). The
lowest TERT expression was found in breast (BRCA),
pancreas (PAAD) and prostate (PRAD) cancer. The
expression of TERT in melanoma skin cancer was
comparable to most of the other cancer types, but
the performance of the models was the worst (r = 0.1)
(Fig. 2a). The performance could be increased by
splitting up the melanoma skin cancer dataset into
samples with and without TERT promoter mutation
(see next section). As common regulators of TERT
across all cancer types, we identified nine regulators:
the two paired box proteins PAX5 and PAX8, the
E2F factors 2 and 4, AR, BATF, SMARCB1, TAF1
and MXI1 (Table 1, all identified TFs are listed in
Additional file 1: Table S3). To validate our results in
silico, we queried Pubmed articles for the identified
regulators. We found 21 out of 1002 TERT articles
for our identified regulators which was a significant
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enrichment for our hits (p = 0.006, Additional file 1:
Tables S4 and S5). When we performed the same
Pubmed query with 9 randomly selected non-TERT
regulators (n = 10), the enrichment was not significant.
We performed an additional resampling test. To show
that the prediction of TERT expression from our
models is better than expected by a set of TFs se-
lected by random chance, we randomly selected non-

TERT TFs used by our model to predict the expres-
sion of TERT in the melanoma samples with a TERT
promoter mutation. This was done 50 times. Aver-
aging the results, the performance of the models was
significantly better for the putative TERT TFs from
the generic regulatory network (r = 0.29) compared to
random non-TERT TFs (r = 0.18) (p = 3.744 E-15, T-
Test). In summary, we applied MIPRIP 2.0 in the

Fig. 2 TERT expression and prediction performance for the investigated different cancer types. Boxplots for each cancer type of (a) the correlation
between predicted and experimental gene expression over all models, and (b) TERT expression in each sample

Fig. 1 Schematic overview of the workflow. Three different modes are available in MIPRIP 2.0. The single-mode can be used to predict the most
relevant regulators of the gene of interest based on a single entity of the disease or condition. The dual-mode compares the regulator
predictions of a gene of interest between two different diseases or conditions (e.g. treatment versus control). The multi-mode can be used for
more than two diseases or conditions to identify the most common and condition specific regulators of the gene of interest
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multi-mode and found nine TFs common to all inves-
tigated cancers predicted to regulate TERT expression
and validated by screening the literature for co-
occurrences.

Applying the dual-mode MIPRIP analysis to melanoma
skin cancer
Melanoma skin cancer was the first cancer type for
which a high frequency of TERT promoter mutations
was discovered, mainly in two hotspot C > T mutations
at position 124 bp and 146 bp upstream of the transla-
tional start codon [20, 21]. In the melanoma data we in-
vestigated, the TERT promoter mutation status was
available for 115 samples. As described in the previous
section, we obtained the lowest performance of our
regulatory models for melanoma samples. Considering
this and the high rate of TERT promoter mutations we
divided the dataset into samples with and without TERT
promoter mutation objecting to improve our predic-
tions. We applied the MIPRIP 2.0 dual-mode to the sep-
arated datasets. Indeed, the performance could be
increased to a correlation of r = 0.29. Employing this ap-
proach resulted in a list of 12 and 17 TFs which were
significantly more often used in the models for the sam-
ples with and without TERT promoter mutation, re-
spectively. AR, E2F1, JUND and ETS1 were the most
significant regulators in the samples with TERT pro-
moter mutation, while HMGA2, HIF1, RUNX2 and
TAL1 were most significant in the samples without
TERT promoter mutation (Table 2). To validate that
ETS1 is a key regulator in the samples with TERT pro-
moter mutation, we investigated published microarray
data from experiments in which ETS1 was knocked
down in melanoma cells with TERT promoter mutation
[22]. Indeed, TERT expression was lower in the ETS1
knockdown sample compared to controls (fold change:
0.82). From the 54,675 affy probe-ids only 8688 probe-
ids (15.9%) had a lower or equal fold change than TERT
(see Additional file 1: Figure S1) in the knockdown

samples evidencing the activating effect of ETS1 on
TERT expression.
To estimate the robustness of the choice for the upper

limit of 10 potential regulators in our MIPRIP analysis,
we investigated models with other limits (1 up to 50 reg-
ulators) and tested them using the melanoma skin can-
cer samples with a TERT promoter mutation. We found
that models with a variety of different smaller numbers
of candidate regulators led to comparable results (Add-
itional file 1: Table S6). In all tested models between 1
and 20 regulators (1–5, 1–10, 5–10, 5–15, 1–20 or 5–20
regulators) AR was selected most often, followed by
ETS1, JUND and E2F1. The performance of the models
of 1 to 50 regulators is shown in Additional file 1: Figure
S2. The figure shows that models with equal or less than
10 regulators yielded the best performance suggesting
that too many regulators in the model can lead to over-
fitting. For models with more regulators, the perform-
ance reached a plateau and decreased. Therefore, models
with 1 to 10 regulators suited well to predict the gene
expression of TERT and this range was used for all ana-
lyses in the study.
In summary, splitting up the melanoma dataset into

two pre-defined cancer subgroups with and without the
TERT promoter mutations led to more reliable model-
ling results (r = 0.29). The dual-mode of MIPRIP 2.0
suited well to identify this specific regulation.

Table 1 Predicted TERT regulators common to all 19 cancer
types

TF E-value

E2F4 0

AR 1.00 E-04

PAX5 4.00 E-04

E2F2 6.00 E-04

BATF 3.20 E-03

PAX8 6.30 E-03

SMARCB1 1.38 E-02

MXI1 1.87 E-02

TAF1 2.12 E-02

Table 2 TERT regulators of melanoma samples with (mut) and
without (wt) TERT promoter mutation

Regulators in mut P-value* Regulators in wt P-value**

AR 3.97 E-37 HMGA2 1.05 E-16

E2F1 3.00 E-29 HIF.1 1.03 E-15

JUND 2.86 E-25 RUNX2 2.88 E-12

SMARCB1 1.85 E-15 TAL1 1.54 E-09

ETS1 4.46 E-13 ESR2 3.92 E-09

SIN3AK20 1.42 E-06 AP-2 3.28 E-06

REST 3.64 E-06 MITF 2.59 E-05

MAZ 7.85 E-06 WT1 2.80 E-05

E2F2 9.20 E-05 SMAD3 5.76 E-05

TAF1 1.36 E-04 TFAP2D 2.78 E-04

BCL11A 4.31 E-04 PAX8 6.04 E-04

MYB 4.73 E-04 GRHL2 7.16 E-04

TP53 1.21 E-03

TCF7 1.68 E-03

MZF1 3.44 E-03

TFAP2C 3.68 E-03

NR2F2 7.96 E-03

*indicates if a regulator was significantly more often selected in the samples
with TERT promoter mutation compared to the wildtype
**indicates if a regulator was significantly more often selected in the wildtype
compared to the TERT promoter mutated samples
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Comparison with ISMARA
We compared our results with results from the well-
established tool ISMARA [13]. Similar to MIPRIP,
ISMARA identifies the activity of regulators based on
their target genes [13]. In contrast to MIPRIP, target
genes are inferred from motif binding information, and
not directly from ChIP experiments. In ISMARA, TF ac-
tivities are calculated for each sample alone and then av-
eraged over the samples of each group (TERT promoter
mutated versus wildtype). ISMARA identified 20 TFs for
the TERT promoter (Additional file 1: Table S7), but
only SIN3A, MAZ and WT1 overlapped with the
MIPRIP 2.0 results. It is known that a TERT promoter
mutation leads to a further binding site of TFs of the
ETS family [20, 21]. From the ETS family of TFs,
ISMARA predicted GABPA, ELF2 and ELF5 with very
low significance, while MIPRIP identified ETS1 as a
highly significant regulator of TERT in the melanoma
samples with a TERT promoter mutation. In summary,
the overlap between MIPRIP and ISMARA was low, par-
ticularly the highly significant hit of ETS1 by MIPRIP
was in high agreement with the literature.

Availability and implementation
MIPRIP 2.0 is implemented as a software package in R
[23]. It is freely available on github [24]. MIPRIP 2.0 is
platform independent and runs on R version 3.5.1 to-
gether with Gurobi version 8.0.1 and the CRAN R pack-
age slam.

Discussion
In the present study we have advanced our software
package “Mixed Integer linear Programming based
Regulatory Interaction Predictor” (MIPRIP) for applica-
tion to human and mouse cells. For this, we selected
known regulator binding information to construct a gen-
eric network linking TFs to their potential target genes.
The interactions between TFs and their targets organize
as a scale-free network comprising hubs as central regu-
lators [25]. TFs with the highest number of target genes
in our generic human regulatory network were CTCF
(n = 16,483), POLR2A (n = 16,076), TAF1 (n = 13,956),
MYC (n = 13,692) and YY1 (n = 13,101), while more than
half of the regulators had less than 25 target genes (Add-
itional file 1: Figure S3). This might reflect the role of
the former TFs as master regulators that recruit chroma-
tin modifying co-factors and remodel the chromatin
structure, as known for MYC [26], or mediate structural
interactions between enhancers and promoters as it has
been reported for CTCF and YY1 [27]. The edges (TF -
target gene interactions) in the generic regulatory net-
work were weighted based on the presumed database re-
liability, published earlier by us basing on a smaller set
of databases [19]. Still, choosing the weights for these

databases to optimality could be better worked out by
setting a well-defined gold-standard data set, which e.g.
could be derived from a set of well-known genes for
which the regulation is well-understood and calibrating
the weights against several reference expression data
sets. We were interested how our method performs
using the weighted edge scores compared to just the
binary information. Instead of the edge scores, we ap-
plied a binary generic regulatory network in which en-
tries equaled to one if the edge score was non-zero and
otherwise zero. We applied this to data of the melanoma
skin cancer samples with TERT promoter mutation. We
again got ETS1, AR, JUND and E2F2 as regulators to be
selected most often by the models showing that the re-
sults were quite comparable. However, the mean per-
formance using the binary network was lower (r = 0.24)
compared to the weighted generic regulatory network
(r = 0.3) showing the improved performance when using
the weighted edge scores.
The MIPRIP 2.0 framework with its new multi-mode

was applied to dissect the regulation of the telomerase
protein subunit TERT across 19 different cancer types,
yielding nine TFs being common to TERT regulation
across all cancer types. These identified regulators
showed a significant enrichment in Pubmed entries for
TERT in contrast to randomly selected TF combinations.
Five TFs (PAX5, PAX8, AR, E2F2 and E2F4) have been
described previously as TERT regulators. It has been re-
ported that PAX5 has two and PAX8 four binding sites
at the TERT transcription start site inducing activation
of TERT transcription. Their function in telomerase
regulation has been validated [28, 29]. The androgen re-
ceptor (AR) belongs to the class of nuclear receptors
and is a repressor of TERT expression [30]. Bilsland
et al. constructed a dynamic Boolean model to study
TERT regulation in ovarian cancer cells. They identified
MYC as an important player in TERT activation. In their
model, loss of MYC led to suppression of TERT, which
was substantially rescued only by a co-suppression of
AR. Interestingly, in their model, TERT expression was
well rescued by a gain of function of ETS [31]. This
compares to its gain of function in the melanoma tu-
mors with the TERT promoter mutation we studied.
The E2F2 and E2F4 factors bind to the E2 recognition
motif and are involved in cell cycle processes, DNA
damage response [32] and regulate TERT transcription
in human B-cell lymphoma [33, 34]. In addition to these
five TFs, we identified BATF, SMARCB1, TAF1 and
MXI1 as novel TERT regulators across cancer entities
that to our knowledge, so far, have not been described
in the literature as TERT regulators. Accordingly, we
suggest these as potential candidates for future investiga-
tions on the mechanism of TERT reactivation in cancer
cells.

Poos et al. BMC Bioinformatics          (2019) 20:737 Page 5 of 12



The best performance of the MIPRIP 2.0 multi-mode
analysis was observed for thymoma and testicular germ
cell cancer, which showed also the highest TERT expres-
sion. The worst performance was observed for melan-
oma skin cancer, even though TERT expression was not
particularly low. As described in the literature, cutane-
ous melanoma skin cancer patients have a high rate of
TERT promoter mutations, being responsible for an up-
regulation of TERT by enabling a further binding site of
TFs from the ETS family [20, 21]. Using MIPRIP 2.0 in
the dual-mode after dividing the melanoma dataset into
cancer samples with and without TERT promoter muta-
tion improved the results considerably. We identified
ETS1 as a highly significant regulator for TERT in tu-
mors with TERT promoter mutation. To further validate
this finding we analyzed publicly available expression
data of an ETS1 siRNA knockdown experiment in a
melanoma cell line with TERT promoter mutation and
found a downregulation of TERT compared to controls.
In line with this, ETS binding together with the activa-
tion of the non-canonical NFκB signaling pathway
through the co-activator p52 enhances the promoter
activity of TERT [35]. Furthermore, it was shown else-
where that TERT promoter mutations can lead to a two-
to four-fold higher TERT promoter activity in melanoma
cells [20, 21]. We observed such an overexpression also
in the analyzed melanoma dataset (p-value = 5.33 E-03).
Besides ETS1, we predicted AR, E2F1 and JUND as

the most significant regulators in melanoma patients
with a TERT promoter mutation. AR and E2F were also
predicted as common TERT regulators in our multi-
mode MIPRIP analysis. A recent study showed that an
inhibition of E2F1 leads to increased cell death in melan-
oma cells, even if they are resistant to BRAF-inhibitors
[36]. These results indicate that E2F1 is an interesting
therapeutic target for melanoma. According to our pre-
dictions, E2F1 regulates samples with a TERT promoter
mutation. As E2F1 is a TERT repressor [32], an inhib-
ition of E2F1 may be more efficient in samples without
TERT promoter mutation.
For melanoma samples without TERT promoter muta-

tion, we predicted HMGA2, HIF1, RUNX2 and TAL1 as
the most significant regulators. HMGA2 is a member of
the high-mobility group of AT-hook proteins, which are
expressed during embryonic development [37] as well as
in different tumors (e.g. squamous cell carcinoma and
malignant melanoma [38]). While only a few samples
showed a TERT promoter mutation [38], it is still
unclear if there is an association between HMGA2
expression and TERT promoter mutations. According to
our predictions, we suggest that TERT regulation by
HMGA2 and TERT promoter mutations are mutually
exclusive, which has to be validated in future
experiments.

In our case study, we observed that splitting up the
datasets into subtypes led to an increased performance
of the regulatory models and was necessary to break
down the relevant regulatory processes. Melanoma pa-
tients with TERT promoter mutation show decreased
survival rates [39]. Hence, identifying subtype specific
regulatory mechanisms may support risk stratification by
employing the identified regulators as biomarkers. In
addition, such predictions may pave the way for a per-
sonalized therapy by developing drugs specifically inter-
fering with the detected TFs.
Using the specific application of known ETS bind-

ing site in the TERT promoter of melanoma samples
with a TERT promoter mutation as a case study, we
compared the results from MIPRIP 2.0 with ISMARA
[13]. The overlap between our results and ISMARA
was very low. Particularly, ISMARA did not identify
ETS1 as a regulator for TERT in samples with a
TERT promoter mutation. GABPA, which is another
member of the ETS-family, was predicted by
ISMARA, but with rather low significance. It was
shown elsewhere that GABPA can bind only to the
TERT promoter mutation at site C228T, but not at
C250T [40]. However, only one third of the mutated
samples had the mutation at C228T, while two-third
showed a C250T mutation [41]. In conclusion, com-
paring these two modeling approaches suggest that,
compared to purely motif based methods like
ISMARA, gene regulatory models basing also on ex-
perimental binding data like MIPRIP may easier de-
tect a regulatory switch caused by genome mutations
in TF – promoter binding regions. Still, for the fu-
ture, further analysis with more case study examples
is necessary giving more evidence for this.
The advancement of MIPRIP 2.0 compared to the pre-

vious version are the following: (1) MIPRIP 2.0 allows
using the information of weighted edges while MIPRIP
1.0 could deal with the yeast regulatory network which
based only on binary interaction values (binding of a
regulator to the target gene was indicated by 1, other-
wise 0). (2) A further advantage of MIPRIP 2.0 is the lar-
ger application variability by implementing three
different modi (single-, dual- and multi-mode). Particu-
larly, the multi-mode allows now also the comparative
analysis of more than two datasets. Besides these ad-
vancements, MIPRIP 2.0 allows to extend the model by
including information about gene copy number, DNA
methylation, miRNA expression and binding, or add-
itional variables e.g. related to further epigenetic
regulation.

Conclusions
We introduced MIPRIP 2.0 and applied it to predict
TERT regulators in a pan-cancer analysis. Some of the
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common TFs identified, like PAX5, PAX8, AR, E2F2 and
E2F4 have been previously described as TERT regulators.
Others, like BATF, SMARCB1, TAF1 and MXI1, are
novel. It will be exciting to test experimentally whether
they are linked to a TMM phenotype. Furthermore, the
predicted TERT regulators were compared in melanoma
samples with wildtype versus mutated TERT promoters.
We validated that a change of TF targets, in this case for
TFs from the ETS family, was captured by MIPRIP 2.0.
The software package is available on github [24] together
with the generic human or mouse regulatory network
and example datasets. It can be applied to a large variety
of datasets to investigate the role of TF mediated gene
regulation of a gene of interest in the context of diseases
or other varying conditions.

Methods
Gene expression data
We downloaded publicly available transcriptome expres-
sion data (RNA-Seq) of all cancer types with more than
100 primary tumor samples from the TCGA Genome
Data Analysis Center (GDAC) of the Broad Institute
[42]. For these datasets the usage restriction has been
lifted according to the TCGA publication guidelines
from December 21, 2015 [43]. The pre-processed tran-
scriptomic data with log2 transformed RSEM [44] nor-
malized values were downloaded for 19 different cancer
types listed in Additional file 1: Table S2. In each cancer
type, genes with more than 25% missing entries and low
varying genes (standard deviation ≤0.5) were filtered out.
Furthermore, we performed a z-score transformation for
each gene across each cancer dataset.

Assembling transcription factor binding information into
a generic human and mouse gene regulatory network
We assembled a comprehensive set of putative regula-
tors for each gene by compiling TF binding information
in human cells from seven different data repositories
comprising (i) MetaCore™ [45] with annotated “direct”,
“indirect” and “unspecific” interactions, (ii) the ChIP En-
richment Analysis (ChEA) database [46], (iii) ChIP data
from the ENCODE project (http://www.genome.gov/En-
code/), (iv) human ChIP-seq and ChIP-ChIP data from
hmCHIP [47], (v) experimentally verified interactions
from the Human Transcriptional Regulation Interactions
database (HTRIdb) [48], (vi) ChIP-seq data for long
non-coding RNA and microRNA genes from ChIPBase
[49] and (vii) the method of Total Binding Affinity
(TBA) [50]. TBA estimates the binding probability of a
TF to the whole range of a gene’s promoter. Only TBA
values with a score ≥ 1.5 were selected. All these reposi-
tories were used to compute the generic network of TFs
and their target genes. Most interactions were extracted
from Encode, followed by ChIPbase and hmChIP

(Additional file 1: Figure S4A). Here, the highly reliable
MetaCore™ interactions represent only 4% of all
extracted TF-target gene interactions. An interaction be-
tween a TF t and a target gene i was considered if it was
listed

(i) in MetaCore™ and labelled as direct, or listed in
Encode (criteria 1),

(ii) in at least two out of MetaCore™ (labelled as
indirect), ChEA, TBA (score ≥ 1.5) or HTRI (criteria
2), or

(iii) in ChIPBase and hmChIP (criteria 3).

Because of these criteria, several interactions were fil-
tered out (Additional file 1: Figure S4B).
The different repositories were not equally incorpo-

rated due to the assumption, that some repositories were
presumably more reliable than others. Because the inter-
actions from MetaCore™ based on literature reports and
were manually curated, MetaCore’s direct interactions
(MCdirti, activation, inhibition or unspecific) were
weighted by a factor of 2, while MetaCore’s indirect in-
teractions (MCindirti, activation, inhibition or unspe-
cific) were weighted by a factor of 1. Entries from cheati,
htriti and tbati were also weighted by a factor of 1, inter-
actions from Encode (encti) by 0.5. A factor of 0.25 was
used for interactions found in hmChIP (hmti) and ChIP-
base (chipti). This led to the overall edge score esti:

esti≔2∙MCdirti þ 0:5∙encti
þ ati∙ MCindirti þ cheati þ htriti þ tbatið Þ
þ 0:25∙ hmti∙chiptið Þ ð1Þ

with

ati≔
1 if MCindirti þ cheati þ htriti þ tbatið Þ≥2

0 else
;

�

ð2Þ
and

MCdirti; encti; ati;MCindirti; cheati; htriti;
tbati; hmti; chipti∈ 0; 1f g

ð3Þ
In total the here presented generic network (version

1.0) comprised 618,537 non-zero entries for 1160 TFs
and 31,915 target genes.
Similarly, a comprehensive set of putative regulators

for each gene was assembled for mouse by compiling TF
binding information from MetaCore™, ChEA and EN-
CODE containing TF binding information for mouse.
Additionally, we added two more databases, ECRBase
and TfactS. ECRBase is based on alignments of
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evolutionary conserved TF binding sites [51]. TfactS [52]
contains interaction information inferred from the regu-
lation of TFs from gene expression data of experimen-
tally well-characterized target genes listed in TRED [53],
TRRD [54], PAZAR [55] and NFIregulomeDB [56].
Interaction information of TF t and target gene i from
MetaCore™ (MCdirti) labelled as direct was weighted by
2. If an interaction was listed in two out of (a) Meta-
Core™ indirect (MCindirti), (b) ChEA (cheati) and (c)
ECRbase (ecrbaseti), it was weighted by 1 (for each
source). A listed mouse ENCODE entry (encti) was
weighted by 0.5. The interactions of TfactS (tfacsti) were
considered to have weaker evidence and were weighted
by 0.25. This led to the overall edge score mesti for
mouse:

mesti≔2∙MCdirti
þ ati∙ MCindirti þ cheati þ ecrbasetið Þ
þ 0:5∙encti þ 0:25∙tfacsti ð4Þ

with

ati≔
1 if MCindirti þ cheati þ ecrbasetið Þ≥2

0 else

�
ð5Þ

and

MCdirti;MCindirti; cheati; ecrbaseti; encti; tfacsti; ati∈ 0; 1f g
ð6Þ

In total the generic mouse network (version 1.0) com-
prises 93,140 non-zero entries for 976 TFs and 15,728
target genes.

Modeling TERT regulation
We optimized our previously developed “Mixed Inte-
ger linear Programming based Regulatory Interaction
Predictor” (MIPRIP) software (https://github.com/Koe-
nigLabNM/MIPRIP) [12]. MIPRIP 2.0 can be used for
one set of samples (single-mode), can be applied to
compare the regulatory processes between two sets of
samples (dual-mode), and for multiple datasets, to
identify the most common and condition specific reg-
ulators (multi-mode) (Fig. 1). The basic idea of
MIPRIP is to identify the most relevant regulators of
a particular target gene by predicting the target gene’s
expression using a linear model in which the covari-
ates are all potential regulators putatively binding to
its promoter. In this study, MIPRIP was applied to
predict the regulators of the TERT gene. The gene
expression value ~gTERT ; k of TERT was predicted for
each sample by the following model:

~gTERT ;k ¼ β0 þ
XT
t¼1

βt ∙est;TERT ∙acttk ð7Þ

where β0 was an additive offset, T the number of all reg-
ulators for which TERT promoter binding information
was available, βt was the optimization parameter for
regulator t, esti was the edge score between regulator t
and its putative target gene i and acttk the activity of
regulator t in sample k. If gene i was reported to be a
target of regulator t, the edge weight was higher than 0.
Instead of using the gene expression value of a regulator,
we calculated an activity value acttk for each regulator
and each sample based on the expression of all its puta-
tive target genes gik by

acttk ¼
Pn

i¼1esti∙gikPn
i¼1esti

ð8Þ

The activity is the cumulative effect of a regulator on
all its target genes, normalized by the sum of all target
genes. To calculate the activity value, we excluded the
expression value of the gene of interest (TERT) itself. A
linear regression was performed based on Mixed Integer
Linear Programming (MILP). MILP has advantages over
the lasso regression model, as in a MILP based regres-
sion, the error penalties are linear (L1 regression) and
not quadratic which avoids over-emphasizing outliers.
Furthermore, MILP enables using binary on-off switches
for each beta coefficient to limit the number of beta co-
efficients [for details, see [19]]. All linear equations are
optimized using the Gurobi optimizer [57] (version 6.0–
7.01) to minimize the difference between the measured
transcript level (from the gene expression matrix) gTERT,
k and the predicted gene expression ~gTERT ;k value. This
equals to minimizing the error terms eTERT, k in

min
Xl

k¼1
gTERT ;k−~gTERT ;k

��� ��� ¼ Xl

k¼1

eTERT ;k ð9Þ

Because MILP cannot handle absolute values, the ab-
solute values were transformed into two inequalities for
each gene i and sample k,

gTERT ;k−~gTERT ;k−eTERT ;k ≤0 ð10Þ

−gTERT ;k þ ~gTERT ;k−eTERT ;k ≤0 ð11Þ

In general, non-trivial models can be constructed
starting with only one regulator up to a maximum of
m = n-2 putative regulators, where n is the number of
samples. In our example, the number of regulators m
was not a critical parameter. The results for different
ranges of regulators (m = 1–5, 1–10, 5–10, 1–20, 5–20
and 1–50) was comparable (listed in Additional file 1:
Table S6, see results).
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To constrain the number of regulators, a binary vari-
able was introduced for each regulator t called xt ∈ {0, 1}.
If regulator t was selected by the model, xt was equal to
1, and zero else. The maximal allowed sum of all binary
xt variables was constrained by the variable limit,

x1 þ x2 þ⋯þ xt ≤ limit; xt∈ 0; 1f g ð12Þ
limit ranged from 1 to 50 depending on the predefined

maximal number of regulators in the model. Further-
more, a variable called ‘Big M’ was utilized to implement
these binary decisions. This implied to define the bounds
of variable βt of regulator t. The bounds of each βt were
set to −1000 ≤ βt ≤ 1000 by

βt−M xt ≤0 ð13Þ
βt þM xt ≥0 ð14Þ

with M = 1000. To avoid overfitting, a 10-times three-
fold cross-validation was performed yielding 300 models
for each dataset. The Pearson correlation coefficient was
calculated for the measured and the predicted gene ex-
pression values from the models to estimate the predic-
tion performance.

Single-mode MIPRIP 2.0 analysis
The single-mode analysis was developed to predict a list
of regulators best explaining the gene expression profile
of the target gene of interest (TERT) for all samples of a
dataset for a single condition or disease. The single
mode has no additional statistical analysis beyond the
linear modelling. The results are simply the frequency of
regulators over all cross-validation runs, prioritized by
their usages.

Dual-mode MIPRIP 2.0 analysis
As a case study, we applied the dual-mode analysis to
the skin cutaneous melanoma (SKCM) dataset. The
SKCM dataset was divided into two subgroups based on
the TERT promoter mutation (based on the analysis of
[41]). In total, the status of the TERT promoter was
available for 115 samples (primary and metastatic sam-
ples). One subgroup (n = 74) comprised samples with a
TERT promoter mutation, the other subgroup com-
prised samples with the according wildtype of the TERT
promoter (n = 41). With these two subgroups we per-
formed a dual-mode analysis by calculating the linear
models using the same parameters as described above.
Significant regulators between the two subgroups were
determined by a two-sided Fisher’s Exact Test, testing
an enrichment of a TF to be in a model of the first or
the second condition based on their distribution in the
different models, followed by multiple testing correction
using the Benjamini-Hochberg method [58]. The strin-
gency cutoff was set to P = 0.01.

Multi-mode MIPRIP 2.0 analysis
The multi-mode analysis was developed to predict (1) a
list of regulators best explaining the gene expression of
the gene of interest (TERT) across all conditions (in our
case tumor types), and (2) for each specific condition, in
contrast to all other conditions. We prioritized the regu-
lators as follows. For each condition, we listed how often
each regulator was selected by the optimizer resulting in
a count table. With these distributions we performed a
one-sided Wilcoxon Test for each regulator in the list to
identify regulators which were selected significantly
more often in one of the conditions compared to all
other conditions yielding the condition specific regula-
tors. Significance values (p-values) were corrected for
multiple testing [58]. To identify the most common
TERT regulators within all conditions (of all 19 cancer
types), a rank product test was performed based on the
ranks from the counts of each condition. A
permutation-based estimation was used to determine if
the rank product value was higher than an observed
value from a random distribution. We then counted how
often the rank product values in the permutations were
below or equal to the observed value, which led to an av-
eraged expected value (E-value) [59].

Systematic literature query
To validate the identified common TERT regulators
from the multi-mode MIPRIP 2.0 analysis with data
from the literature, a Pubmed [60] search was per-
formed. For this purpose, all nine identified regulator
gene symbols (from Table 1) were queried together with
the terms “TERT” and “telomerase”, “human” and “regu-
lation”. The query was “(E2F4 OR AR OR PAX5 OR
E2F2 OR BATF OR PAX8 OR SMARCB1 OR MXI1 OR
TAF1) AND TERT AND telomerase AND human AND
regulation”. The received number of articles was com-
pared to the number of articles from a query without
the identified regulators. The query for this was “TERT
AND telomerase AND human AND regulation”. For the
background, the same two queries were performed with-
out the “TERT” gene symbol. Using the results of these
queries, a Fisher’s Exact Test was performed to test if
the nine identified regulators were found significantly
more often together with TERT than without TERT.

TF perturbation experiments
We investigated TERT expression upon ETS1 knockdown
for validating our result of the dual-mode case study. Pre-
viously, Wang et al. performed siRNA mediated knock-
downs of 45 TFs and signaling molecules in the
melanoma cell line A375. The gene expression of cells
with the knockdown (1 sample per knockdown), untreated
(3 replicates) and siRNA control treated (3 replicates) cells
was profiled using microarrays (Affymetrix GeneChip
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Human Genome U133 Plus 2.0) 48 h after transfection
[22]. RMA-normalized expression data of these perturb-
ation experiments was downloaded from Gene Expression
Omnibus (GSE31534). Affy probe-ids were mapped to
gene symbols using BioMart [61] and expression values of
multiple affy probe-ids for the same gene were averaged.
A fold change was calculated for TERT upon ETS1 knock-
down compared to the controls.

Comparison of MIPRIP 2.0 with ISMARA
We compared our MIPRIP 2.0 results with the results
from the “Integrated Motif Activity Response Analysis”
(ISMARA) tool. ISMARA predicts regulatory interac-
tions between the TFs and the target genes based on TF
binding motifs [13]. For the SKCM data from TCGA
only preprocessed data was available. Hence, ISMARA
could not be used via the web portal. Therefore, the
ISMARA analysis was performed by the developers of
ISMARA using FPKM values (downloaded from the
GDC portal [62], June 2018) and default settings. For
comparison, MIPRIP models were also constructed
using these FPKM values (log2- and z-transformed) in-
stead of the RSEM normalized counts. For both datasets,
the regulators AR, JUND, E2F1, E2F2 and ETS1 were se-
lected most often (Additional file 1: Table S6, column
“FPKM”).
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